Rolling Bearing Fault Detection Based on the Teager Energy Operator and Elman Neural Network

Author:

Liu Hongmei1,Wang Jing1,Lu Chen12ORCID

Affiliation:

1. School of Reliability and Systems Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China

2. Science & Technology Laboratory on Reliability & Environmental Engineering, Beijing 100191, China

Abstract

This paper presents an approach to bearing fault diagnosis based on the Teager energy operator (TEO) and Elman neural network. The TEO can estimate the total mechanical energy required to generate signals, thereby resulting in good time resolution and self-adaptability to transient signals. These attributes reflect the advantage of detecting signal impact characteristics. To detect the impact characteristics of the vibration signals of bearing faults, we used the TEO to extract the cyclical impact caused by bearing failure and applied the wavelet packet to reduce the noise of the Teager energy signal. This approach also enabled the extraction of bearing fault feature frequencies, which were identified using the fast Fourier transform of Teager energy. The feature frequencies of the inner and outer faults, as well as the ratio of resonance frequency band energy to total energy in the Teager spectrum, were extracted as feature vectors. In order to avoid a frequency leak error, the weighted Teager spectrum around the fault frequency was extracted as feature vector. These vectors were then used to train the Elman neural network and improve the robustness of the diagnostic algorithm. Experimental results indicate that the proposed approach effectively detects bearing faults under variable conditions.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference10 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3