Affiliation:
1. Electronics and Communication Department, Manipal Institute of Technology, Manipal 576104, India
Abstract
About 1–3% of the world population suffers from epilepsy. Epileptic seizures are abnormal sudden discharges in the brain with signatures manifesting in the electroencephalograph (EEG) recordings by frequency changes and increased amplitudes. These changes, in this work, are captured through static and dynamic features derived from three Teager energy based filter-bank cepstra (TE-FB-CEPs). We compared the performance of linear, logarithmic, and Mel frequency scale TE-FB-CEPs using radial basis function neural network in general epileptic seizure detection. The comparison is tried on eight different classification problems which encompass all the possible discriminations in the medical field related to epilepsy. In a previous study, using traditional cepstrum on the same database, we had found that the composite vectors showed a degraded performance in seizure detection. In this study, however, irrespective of frequency scaling used, it is found that the composite vectors of TE-FB-CEPs maintain excellent overall accuracy in all the eight classification problems.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献