Bifurcation Analysis of an SIR Model with Logistic Growth, Nonlinear Incidence, and Saturated Treatment

Author:

Pérez Ángel G. C.1ORCID,Avila-Vales Eric1ORCID,García-Almeida Gerardo Emilio1ORCID

Affiliation:

1. Facultad de Matemáticas, Universidad Autónoma de Yucatán, Anillo Periférico Norte, Tablaje Catastral 13615, C.P. 97119, Mérida, Yucatán, Mexico

Abstract

There is a wide range of works that have proposed mathematical models to describe the spread of infectious diseases within human populations. Based on such models, researchers can evaluate the effect of applying different strategies for the treatment of diseases. In this article, we generalize previous models by studying an SIR epidemic model with a nonlinear incidence rate, saturated Holling type II treatment rate, and logistic growth. We compute the basic reproduction number and determine conditions for the local stability of equilibria and the existence of backward bifurcation and Hopf bifurcation. We also show that, when the disease transmission rate and treatment parameter are varied, our model undergoes a Bogdanov-Takens bifurcation of codimension 2 or 3. Simulations of the solutions and numerical continuation of equilibria are carried out to generate 2D and 3D bifurcation diagrams, as well as several related phase portraits that illustrate our results. Our work shows that incorporating these factors into epidemic models can lead to very complex dynamics.

Funder

Universidad Autónoma de Yucatán

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3