Influence of Overlying Caprock on Coalbed Methane Migration in the Xutuan Coal Mine, Huaibei Coalfield, China: A Conceptional Analysis on Caprock Sealability

Author:

Zhang Kaizhong123ORCID,Liu Qingquan123ORCID,Jin Kan1234,Wang Liang123ORCID,Cheng Yuanping123ORCID,Tu Qingyi123ORCID

Affiliation:

1. Key Laboratory of Gas and Fire Control for Coal Mines (China University of Mining and Technology), Ministry of Education, Xuzhou 221116, China

2. National Engineering Research Center for Coal & Gas Control, China University of Mining and Technology, Xuzhou 221116, China

3. School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China

4. College of Quality & Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China

Abstract

In order to determine the controlling factors affecting coalbed gas migration in the Xutuan coal mine, Huaibei Coalfield, China, overlying caprocks with Quaternary and Neogene formation (loose bed), Paleogene formation (Redbed), and coal-bearing strata were investigated via petrography, lithology, and physical properties according to laboratory tests, theoretical analysis, and on-site exploration. Results indicate that the basic properties of coal were not significantly changed whereas the effect of coalbed gas escape was promoted in the presence of Redbed and loose bed. The pore structure analysis shows that Redbed has well-developed pore connectivity than coal-bearing strata (main components are sandstone, siltstone, and mudstone). Also, the diffusion coefficient and permeability of Redbed and loose bed are proved to be a little different than those of sandstone but are much higher than those of mudstone and siltstone. Based on the aforementioned findings, investigation on the sealing mechanism of overlying caprocks on CBM migration was further discussed, interpreting that the thickness, permeation, and diffusion features are crucial factors for sealing capacity of the overlying caprock. Thus, with the simplification on the thickness of overlying strata, a conceptional analysis was carried out to theoretically estimate the sealability of caprocks from surface drilling holes; it appears, though, that the master factor on coalbed methane accumulation is coal-bearing strata instead of Redbed and loose bed with a poor sealability. In this case, the reliability of the evaluation method could be indirectly validated from the on-site gas content data of the actual coal seam to fundamentally reflect the effect of Redbed and loose bed on gas-escaping, and the impact of coal-bearing strata on gas accumulation in the coal seam.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3