Possible Continuous Vertical Water Leakage of Deep Aquifer: Records from a Deep Well in Tianjin Province, North China

Author:

Zhang Yan123ORCID,Sun Xiaolong4,Huang Tianming123ORCID,Qi Shengwen123,Fu Li-Yun56,Yang Qiu-Ye12ORCID,Hu Junhua7,Zheng Bowen123,Zhang Wang238

Affiliation:

1. Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. Innovation Academy for Earth Science, Chinese Academy of Sciences, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. National Institute of Natural Hazards, Ministry of Emergency Management, China

5. Shandong Provincial Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China

6. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China

7. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, A-1 Fuxing Road, Beijing 100038, China

8. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

It is well known that the storage of the valuable helium and other natural gases needs thick well-confined aquitards. Meanwhile, the assumption that deep aquifers are confined is most evident from the wide practices of targeting deep aquifers as the storage of toxic wastes and CO2. With the negative phase shifts of the M2 tidal wave, previously, deep Gaocun well (~3500 m) in the North China Platform is assumed to be confined fairly well. However, water level of the Gaocun well has been continuously decreasing for ~40 years without coseismic variations and without explainable mechanism. In this study, innovatively, we find that even buried in ~3500 meters deep, and covered by thick compact mudstones, the aquifer of well Gaocun is calculated to be continuously leaking for ~40 years probably induced by the vertical leakage incurred by aquitard fractures, which is under the assumptions of the none-leaking bottom layer and none direct pumping or exploiting in the observation aquifer layer. Meanwhile, for the first time, we did a detailed systematic comparison between the leaky models of the tidal response and the barometric response of water level, which indicate a consistency leaky result, and the minor difference mainly induced by the frequency differences. Merits and demerits of both models are also analyzed. Last but not least, underground fluid leakages might frequently occur, which are becoming increasingly worldwide urgent since that might also be related with surface sourced contaminations, toxic waste burials, and burial and exploration of the natural gas reservoirs.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3