Identifying Hub Genes and miRNA-mRNA Regulatory Networks in Mice Infected with H1N1 Influenza Virus

Author:

Li Mingyang1ORCID,He Qizhi2ORCID,Chen Lingli3ORCID

Affiliation:

1. Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China

2. School of Basic Medical Science, Changsha Medical University, Changsha, Hunan, China

3. Hunan University of Chinese Medicine, Changsha, Hunan, China

Abstract

H1N1 influenza virus is a major factor in seasonal influenza outbreaks. After the body is infected with the influenza virus, the expression of certain mRNAs, including miRNAs, could be affected. However, the association between these mRNAs and miRNAs remains unclear. This study is aimed at identifying differentially expressed genes (DEGs) and miRNAs (DEmiRs) caused by H1N1 influenza virus infection and constructing a miRNA-mRNA regulatory network. Nine GSE datasets were downloaded from the Gene Expression Omnibus database, of which seven were mRNA data and two were miRNA data. The limma package in R language package was used to analyze array data, and edgeR package was used to analyze high-throughput sequencing data. At the same time, the genes related to H1N1 infection were further screened by WGCNA analysis. DEGs were subjected to Gene Ontology and KEGG pathway enrichment analyses by DAVID database, while the STRING database predicted the protein-protein interaction (PPI) network. The correspondence between miRNA and target mRNA was analyzed by the miRWalk database. Cytoscape software was used to output PPI results, identify hub genes, and construct a miRNA-mRNA regulatory network. 114 DEGs and 37 candidate DEmiRs were identified for subsequent analysis. These DEGs were significantly enriched in response to the virus, cytokine activity, and symbiont-containing vacuole membrane. According to KEGG analysis, DEGs were enriched in PD-L1 expression and PD-1 checkpoint pathway. The key point Cd274 (PD-L1) was highly expressed in the H1N1-infected group. Finally, a potential miRNA-mRNA regulatory network (containing 8 candidate DEmiRs and 69 candidate DEGs) and a PPI network were constructed. After that, three hub genes were identified: Ifit3, Stat2, and Irf7. These hub genes and Cd274 were validated by another independent high-throughput dataset and were highly expressed pattern. This study will help researchers gain insights into the intrinsic effects of H1N1 influenza virus infection on the host and suggest a novel association of H1N1 virus with the host immune system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3