Chemical Functionalization of Helical Carbon Nanotubes: Influence of Sonication Time and Concentrations of Sulfuric and Nitric Acids with 3 : 1 Mixing Ratio

Author:

Taklimi Sean R.1ORCID,Ghazinezami Ali1ORCID,Askari Davood1ORCID

Affiliation:

1. Department of Mechanical Engineering, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0133, USA

Abstract

Carbon nanotubes (CNTs) with straight geometries have been widely studied for various engineering applications, and they are often treated or functionalized to improve their effectiveness, depending on their role and expected performance. However, helical configurations of CNTs (HCNTs) have not been sufficiently investigated, especially in their functionalized states for high-performance nanocomposite applications. The coil-shaped geometry of these HCNTs increases the mechanical entanglement of these nanotubes with a host resin system when they are used as reinforcements. This consequently has the potential to improve the mechanical, thermal, electrical, and magnetic properties of the polymeric matrix systems. A uniform dispersion of CNTs in the resin plays an important role in obtaining improved and consistent properties in the final nanocomposite part. To improve the homogeneous dispersion (individual suspension) of these nanotubes in the host resin and to enhance their interactions/bonds with the resin molecules, the surface of these nanotubes should be modified. This study investigates a sonication method for chemical functionalization of HCNTs using a mixture of sulfuric and nitric acids with 3 to 1 mixing ratio [3 : 1], and it evaluates the effects of acid concentrations and sonication time on the severity of the functionalization process. To evaluate the effectiveness of the process parameters, the functionalized HCNTs (FHCNTs) were examined using several characterization instruments and techniques such as Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD), visual dispersion test, and Raman spectroscopy. The characterization results confirmed that the changes in process parameters were mostly effective and the atomic structures of the functionalized HCNTs were successfully altered. All FHCNT samples demonstrated higher dispersion uniformity, increase in Raman ID/IG ratios, and changes in the FTIR spectra compared to the pristine HCNTs. Most of the FHCNTs had a reduction in crystallinity, which was consistent with our expectation that functionalization generates more defects on the surface structure of HCNTs, thus leading to a lower intensity of the graphitic peak. The largest reduction in crystallinity was seen for HCNTs treated with a 16 molarity acidic solution; therefore, the HCNTs that were treated with lower molarity acids could be used for further studies and explored for their effective applications in improving the mechanical, thermal, and electrical properties of polymeric nanocomposites.

Funder

Wichita State University

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3