An Efficient Approach for Stimulating Cooperation among Nodes in Wireless Sensor Networks

Author:

Xu Hongyun1,Wang Ding2,Shen Shigen34,Shi Youqun2,Cao Qiying1ORCID

Affiliation:

1. School of Information Science and Technology, Donghua University, Shanghai 201620, China

2. School of Computer Science and Technology, Donghua University, Shanghai 201620, China

3. Department of Computer Science and Engineering, Shaoxing University, Shaoxing 312000, China

4. College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing 314001, China

Abstract

A Wireless Sensor Network (WSN), characterized as being self-organizing and multihop, consists of a large number of low-power and low-cost nodes. The cooperation among nodes is the foundation for WSNs to achieve the desired functionalities, such as the delivery or forwarding of packets. However, due to the limited resources such as energy, computational availability, and communication capabilities, there may exist some selfish nodes that refuse to cooperate with others. If the critical masses of nodes do not cooperate in the network, the network would not be able to operate to achieve its functional requirements. To resolve the problem above, we introduce a Win-Stay, Lose-Likely-Shift (WSLLS) approach into a Prisoner's Dilemma (PD) game framework, and it applies a utility-based function, which is a linear combination of one player's payoff and its neighbors' in a game, to evaluate a player's (i.e., node) performance for a game. Experimental results demonstrate that our approach performs well in stimulating cooperation in different settings under a certain condition with limited information, regardless of the static topologies types of WSNs, initial proportion of cooperation, and the average number of neighbors.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3