A Novel and Facile Nanoclay Aerogel Masterbatch toward Exfoliated Polymer-Clay Nanocomposites through a Melt-Mixing Process

Author:

Luecha Wasuthep12,Magaraphan Rathanawan123ORCID

Affiliation:

1. Polymer Processing and Polymer Nanomaterials Research Unit, Chulalongkorn University, Bangkok 10330, Thailand

2. The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand

3. Green Materials for Industrial Application Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

This research employed a novel and facile approach called nanoclay aerogel masterbatch.. This innovative technique was conducted by attaching the clay layers directly onto a mobile polymer, for example, polyethylene glycol (PEG), in order to modify the clay layer through PEG-clay intercalation and PEG-hydrogen bonding. This state was maintained with a small amount of the anionic polymer hydrogel, for example, kappa-carrageenan (KC), and turning it into a highly porous and fragile structure by freeze-drying, thus a so-called nanoclay aerogel masterbatch. The facile nanoclay aerogel masterbatch was able to be attained even at high clay loadings (55–67 wt.% of the inorganic clay content) with constant PEG and KC loadings. The interlayer spacing enlargement of the nanoclay galleries was around 17 Å with the typical lamellar morphology like a house of cards structure. The density values were within 0.108–0.122 g·cm−3. The thermal stabilities were up to 270°C, revealing better thermal stability for melt mixing with the commodity plastics at a high melting temperature. The flowability and processability were certified by the melt flow index (MFI) results. The highest nanoclay loading capacity (67 wt.%) of the achieved nanoclay aerogel masterbatch was selected to prepare PS-clay nanocomposites via a melt-mixing process. The comparative nanocomposites were produced by using organoclay. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) exhibited that the exfoliated morphologies were obtained at all clay contents (1–3 wt.%); however, the intercalated structure was gained by using organoclay. The outstanding transparency and brightness were remarked from the specimens prepared by using the nanoclay aerogel masterbatch. The brownish specimens were observed by using organoclay. The significant improvements of tensile properties, glass transition temperature (Tg), and thermal stability were noticed from the nanocomposites prepared using the nanoclay aerogel masterbatch.

Funder

Chulalongkorn University

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3