Research on Haze Image Enhancement based on Dark Channel Prior Algorithm in Machine Vision

Author:

Li Dan1ORCID,Sun Jinping1,Wang Hongdong1,Shi Hanqin1,Liu Weiwei2,Wang Likai2

Affiliation:

1. School of Information Engineering (School of Big Data), Xuzhou University of Technology, Xuzhou, Jiangsu, China

2. Traffic Police Detachment of Xuzhou Public Security Bureau, Xuzhou, Jiangsu, China

Abstract

According to the characteristics of foggy images, such as high noise, low resolution, and uneven illumination, an improved foggy image enhancement method based on dark channel priority is proposed. First, the new algorithm refines the transmittance and optimizes the atmospheric light value and converts the restored image to HSV space. Second, the brightness V component is enhanced by MSRCR algorithm improved by bilateral filtering, and the saturation S is improved by adaptive stretching algorithm. Finally, the image is converted from HSV space to RGB space to complete image enhancement. The new method solves the problems of that the color of large area is uneven and the overall color of the image is dark when the traditional dark channel prior method is used to remove fog. The experimental results show that from subjective evaluation and quantitative analysis the new algorithm overcomes the shortcomings of noise amplification and edge blur when the conventional enhancement algorithm enhances the image. It can improve image darkening and avoid image distortion in JPEG, BMP, GIF, PNG, PSD, and TIFF formats. By comparing with other image enhancement algorithms, the improved algorithm performs better than DCP, SSR, MSR, MSRCR, and CLAHE algorithm in PSNR, SSIM, and IE evaluation indexes. It has a good effect on preserving the edge information and has good adaptability and stability for heavily polluted haze image enhancement.

Funder

Xuzhou Science and Technology Program

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3