Affiliation:
1. Geomathematics Group, Department of Mathematics, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern 67653, Germany
Abstract
A geoscientifically relevant wavelet approach is established for the classical (inner) displacement problem corresponding to a regular surface (such as sphere, ellipsoid, and actual earth surface). Basic tools are the limit and jump relations of (linear) elastostatics. Scaling functions and wavelets are formulated within the framework of the vectorial Cauchy-Navier equation. Based on appropriate numerical integration rules, a pyramid scheme is developed providing fast wavelet transform (FWT). Finally, multiscale deformation analysis is investigated numerically for the case of a spherical boundary.
Funder
German Academic Exchange Service
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献