CBX4 Regulates Replicative Senescence of WI-38 Fibroblasts

Author:

Chen Yu-Hsiu123ORCID,Zhang Xin14ORCID,Ko Kuei-Yueh5ORCID,Hsueh Ming-Feng14ORCID,Kraus Virginia Byers1346ORCID

Affiliation:

1. Duke Molecular Physiology Institute, Duke University, Durham, NC, USA

2. Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taiwan

3. Department of Pathology, Duke University Medical Center, Durham, NC, USA

4. Department of Orthopaedic Surgery, Duke University, Durham, NC, USA

5. Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, USA

6. Department of Medicine, Duke University School of Medicine, Durham, NC, USA

Abstract

Cellular senescence is characterized by cell cycle arrest and senescence-associated secretory phenotypes. Cellular senescence can be caused by various stress stimuli such as DNA damage, oxidative stress, and telomere attrition and is related to several chronic diseases, including atherosclerosis, Alzheimer’s disease, and osteoarthritis. Chromobox homolog 4 (CBX4) has been shown to alleviate cellular senescence in human mesenchymal stem cells and is considered a possible target for senomorphic treatment. Here, we explored whether CBX4 expression is associated with replicative senescence in WI-38 fibroblasts, a classic human senescence model system. We also examined whether and how regulation of CBX4 modifies the senescence phenotype and functions as an antisenescence target in WI-38. During the serial culture of the WI-38 primary fibroblast cell line to a senescent state, we found increased expression of senescence markers, including senescence β-galactosidase (SA-βgal) activity, protein expression of p16, p21, and DPP4, and decreased proliferation marker EdU; moreover, CBX4 protein expression declined. With knockdown of CBX4, SA-βgal activity and p16 protein expression increased, and EdU decreased. With the activation of CBX4, SA-βgal activity, p16, and DPP4 protein decreased. In addition, CBX4 knockdown increased, while CBX4 activation decreased, gene expression of both CDKN2A (encoding the p16 protein) and DPP4. Genes related to DNA damage and cell cycle pathways were regulated by CBX4. These results demonstrate that CBX4 can regulate replicative senescence in a manner consistent with a senomorphic agent.

Funder

NIH/NIA

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3