Imaging Characteristics of USPIO Nanoparticles (<5 nm) as MR Contrast Agent In Vitro and in the Liver of Rats

Author:

Ma Xiaohong1ORCID,Wang Shuang1,Hu Longbin1,Feng Shichao1,Wu Zhiyuan2,Liu Siyun3,Duan Shaofeng3,Chen Zhongwei3,Zhou Chunwu1,Zhao Xinming1ORCID

Affiliation:

1. Diagnostic Radiology, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China

2. State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China

3. GE Healthcare (China), Beijing 100176, China

Abstract

Iron nanoparticles have an increasingly more and more important role in MR molecular imaging due to their novel magnetic and surface chemical properties. They provide new possibilities for noninvasive diagnosis and treatment monitoring, especially for tissues that are rich in macrophages. The smaller size and prolongation of the plasma half-life change the in vivo fate of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles captured by liver in reticuloendothelial system (RES) or mononuclear phagocytic system (MPS). However, there is still a lack of MR imaging studies on the liver assessing USPIO nanoparticles <5 nm in size to reflect its absorption and clearance properties. In this study, we used MRI to study the in vitro phantom and in vivo rat liver imaging characteristics of USPIO nanoparticles (<5 nm). The results showed that USPIO nanoparticles (<5 nm) could potentially reduce longitudinal and transverse relaxation times and showed similar T1 relaxation rates compared with commercial gadolinium chelates. In addition, USPIO nanoparticles (<5 nm) in vivo demonstrated both positive (T1) and negative (T2) liver contrast enhancement in healthy rats’ liver. Furthermore, USPIO nanoparticles showed relatively good in vitro biocompatibility and fast clearance (within 45.17 minutes after intravenous injection) in the normal liver. Taken together, these data might inspire a new personalized and precise diagnostic tool and stimulate new applications for specific targeted molecular probes.

Funder

Chinese Academy of Medical Sciences

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3