Mass Spectrometry Amyloid Typing Is Reproducible across Multiple Organ Sites

Author:

Holub Dusan1,Flodrova Pavla2,Pika Tomas3,Flodr Patrik2,Hajduch Marian14ORCID,Dzubak Petr14ORCID

Affiliation:

1. Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic

2. Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00 Olomouc, Czech Republic

3. Department of Hemato-Oncology, University Hospital Olomouc, I.P. Pavlova 185/6, 779 00 Olomouc, Czech Republic

4. Cancer Research Czech Republic, Hnevotinska 5, 779 00 Olomouc, Czech Republic

Abstract

We have determined patient’s amyloid subtype through immunohistochemical and proteomic analyses of formalin-fixed, paraffin-embedded (FFPE) tissue samples from two affected organs per patient. Amyloid typing, via immunohistochemistry (IHC) and laser microdissection followed by the combination of liquid chromatography with mass spectrometry (LMD-LC-MS), was performed using tissue samples of the human heart, liver, kidney, tongue, and small intestine from 11 patients, and the results were compared with clinical data. LMD-LC-MS correctly typed AL amyloidosis in all 22 FFPE tissue samples despite tissue origin. In contrast, IHC was successful only in the analysis of eight FFPE tissue samples with differences between the examined organs. In the majority of LMD-LC-MS typed samples, the level of IHC staining intensity for transthyretin and serum amyloid A was the same as that for Ig κ and Ig λ antibodies, suggesting low Ig κ or Ig λ antibodies reactivity and the additional antibody clones were essential for correct typing. Both methods used in the study were found to be suitable for amyloid typing, although LMD-LC-MS yielded more promising results than IHC.

Funder

Technology Agency of the Czech Republic

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3