Joint Covariate Detection on Expression Profiles for Selecting Prognostic miRNAs in Glioblastoma

Author:

Sun Chengqi1,Zhao Xudong1ORCID

Affiliation:

1. College of Information and Computer Engineering, Northeast Forestry University, Harbin 150001, China

Abstract

An important application of expression profiles is to stratify patients into high-risk and low-risk groups using limited but key covariates associated with survival outcomes. Prior to that, variables considered to be associated with survival outcomes are selected. A combination of single variables, each of which is significantly related to survival outcomes, is always regarded to be candidates for posterior patient stratification. Instead of individually significant variables, a combination that contains not only significant but also insignificant variables is supposed to be concentrated on. By means of bottom-up enumeration on each pair of variables, we propose a joint covariate detection strategy to select candidates that not only correspond to close association with survival outcomes but also help to make a clear stratification of patients. Experimental results on a publicly available dataset of glioblastoma multiforme indicate that the selected pair composed of an individually significant and an insignificant miRNA keeps a better performance than the combination of significant single variables. The selected miRNA pair is ultimately regarded to be associated with the prognosis of glioblastoma multiforme by further pathway analysis.

Funder

Specialized Personnel Start-Up

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3