A Novel Approach for Classifying MANETs Attacks with a Neutrosophic Intelligent System based on Genetic Algorithm

Author:

Elwahsh Haitham1ORCID,Gamal Mona2,Salama A. A.3,El-Henawy I. M.4

Affiliation:

1. Computer Science Department, Faculty of Computers and Information, Kafrelsheikh University, Kafrelsheikh 33516, Egypt

2. Information System Department Faculty of Computers and Information, Kafrelsheikh University, Kafrelsheikh 33516, Egypt

3. Department of Mathematics and Computer Science, Faculty of Sciences, Port Said University, Port Said 522, Egypt

4. Computer Science Department, Faculty of Computers and Information, Zagazig University, Zagazig, Egypt

Abstract

Recently designing an effective intrusion detection systems (IDS) within Mobile Ad Hoc Networks Security (MANETs) becomes a requirement because of the amount of indeterminacy and doubt exist in that environment. Neutrosophic system is a discipline that makes a mathematical formulation for the indeterminacy found in such complex situations. Neutrosophic rules compute with symbols instead of numeric values making a good base for symbolic reasoning. These symbols should be carefully designed as they form the propositions base for the neutrosophic rules (NR) in the IDS. Each attack is determined by membership, nonmembership, and indeterminacy degrees in neutrosophic system. This research proposes a MANETs attack inference by a hybrid framework of Self-Organized Features Maps (SOFM) and the genetic algorithms (GA). The hybrid utilizes the unsupervised learning capabilities of the SOFM to define the MANETs neutrosophic conditional variables. The neutrosophic variables along with the training data set are fed into the genetic algorithm to find the most fit neutrosophic rule set from a number of initial subattacks according to the fitness function. This method is designed to detect unknown attacks in MANETs. The simulation and experimental results are conducted on the KDD-99 network attacks data available in the UCI machine-learning repository for further processing in knowledge discovery. The experiments cleared the feasibility of the proposed hybrid by an average accuracy of 99.3608 % which is more accurate than other IDS found in literature.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3