Multiobjective Optimization Approach for Robust Bridge Damage Identification against Sensor Noise

Author:

Ok Seung-Yong1ORCID,Jung Sungmoon2,Song Junho3

Affiliation:

1. Associate Professor, Department of Civil, Safety and Environmental Engineering, Hankyong National University, 327 Chungang-ro, Anseong-si, Kyonggi-do 17579, Republic of Korea

2. Associate Professor, Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA

3. Professor, Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

Abstract

One of the important goals of structural health monitoring is to identify structural damage using measured responses. However, such damage identification is sensitive to noises in the response measurements. Even a small change in the measurement may result in a significantly biased damage assessment. The goal of this paper is to expand the multiobjective optimization approach developed for robust damage identification in order to facilitate its applications to more realistic bridge damage identification problems. Specifically, a benchmark problem on highway bridges, developed under the auspices of International Association for Bridge Maintenance and Safety (IABMAS), is investigated. Various issues regarding sensor noises, multiple measurements, and loading scenarios are addressed to improve the robustness of bridge damage identification. A major finding from this study is that the stochastic process of Pareto optimal solutions obtained in a single run not only captures the actual damage locations successfully but also provides useful information such as damage-detected ratio on the potential candidates for damage to be inspected on site. Moreover, it is shown through the success, failure, and partial detection rates that the robustness of the proposed approach can be improved by using appropriate excitation scenarios and multiple sets of measurement data.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3