Sensorless Control for Joint Drive Unit of Lower Extremity Exoskeleton with Cascade Feedback Observer

Author:

Pei Pei1ORCID,Pei Zhongcai1,Shi Zhengqiang2,Tang Zhiyong1ORCID,Li Yang1

Affiliation:

1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

2. Beijing Institute of Precise Mechatronic Controls, Beijng 100076, China

Abstract

In this paper, a sensorless control method for joint drive unit driven by BLDC motor of low extremity exoskeleton, cascade feedback observer identification method, is proposed. The cascade feedback observer identification method is based on improved Integral-Switching-Function Sliding-Mode-Observer (ISF-SMO) and adaptive FIR filter. The improved Integral-Switching-Function Sliding-Mode-Observer is used to identify the back-EMF of motor. The sliding mode surface redesigned according to Integral-Switching-Function (ISF) eliminates the inevitable chattering problem in conventional Sliding-Mode-Observer (SMO). The stability condition of Integral-Switching-Function Sliding-Mode-Observer is obtained with Lyapunov function. Meanwhile, considering the estimation error and system instability caused by the mismatch between the actual resistance value (Rs) and the set resistance value, the LMS algorithm is used to estimate the resistance value online according to the structure of adaptive FIR filter. When system is running, the modified Integral-Switching-Function Sliding-Mode-Observer and adaptive FIR filter are used to modify the back-EMF and the resistance value by cascading feedback relation, and the modified back-EMF value is taken as the final output of the system. Because of considering the uncertainty of resistance caused by temperature variation, the robustness and stability of the cascade feedback observer can be improved. Meanwhile, higher estimation accuracy is obtained, and operation range of sensorless control is extended, which is suitable for motor in low speed region. Finally, the correctness and validity of the proposed method are verified by simulations and experiments.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3