Degradation Analysis of Jute Fiber Reinforced Waste Tile Powder-Filled Polymer Composite on Wear Characteristics

Author:

Balan G. Sakthi1,Sridharan M.2,Balasundaram R.3ORCID,Sasikaran A.2,Sagar M.2,Dinesh S.4ORCID,Vijayan V.4ORCID,Rajkumar S.5ORCID

Affiliation:

1. Research Scholar, School of Mechanical Engineering, Vellore Institute of Technology, Vellore-632014, India

2. Department of Mechanical Engineering, K.Ramakrishnan College of Engineering, Trichy, India

3. Department of Mechanical Engineering, SRM Institute of Science and Technology, Trichy Campus, 621105 Tamil Nadu, India

4. Department of Mechanical Engineering, K.Ramakrishnan College of Technology, Samayapuram, Trichy, 621112 Tamil Nadu, India

5. Department of Mechanical Engineering, Faculty of Manufacturing, Institute of Technology, Hawassa University, Ethiopia

Abstract

In this study, a polymer composite is made using chemically treated jute fiber and waste floor tile powder as an alternative source for roof tile application. The wear qualities were examined at various ages, and the outcomes were optimized. In order to improve the wetting properties of the jute fiber, it was chemically treated. MINITAB software was used to develop Taguchi method parameters such as jute fiber percentage, waste tile powder percentage, and NaOH chemical treatment using the MINITAB software. It was determined that hardness was the most important characteristic in terms of wear properties after the specimens were subjected to ageing and abrasion wear testing and hardness tests were carried out as per normal protocols. As a result of the waste tile powder addition, the surface and core pore formation rates were reduced and the wear index rates were low. Jute fiber with 15%, 9% tile powder, and 5% NaOH treatment were found to have the lowest wear index of the other specimen compositions tested, according to the wear index. Specimen made with 5% jute fiber addition, 9% tile powder inclusion, and 10% NaOH treatment, on the other hand, had more hardness. Degradation of the fibers and delamination are side effects of the ageing process. The wear resistance of the surface was increased by the use of waste tile powder.

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3