Similarity Law between Centrifuge Scale Test and Prototype Underwater Explosion

Author:

Ma Shang12ORCID,Chen Yeqing2,Wang Zhenqing1ORCID,Wang Jianhui2,Lyu Linmei2,Wei Wanli12

Affiliation:

1. Harbin Engineering University, Harbin, China

2. Institute of Defense Engineering, AMS, PLA, Beijing, China

Abstract

Shock wave and bubble pulsation caused by underwater explosion destroy the hydraulic structure. However, the realization of the underwater explosion prototype test is restricted by many factors, such as the site environment. Furthermore, the repeatability of the test scheme is not strong. The centrifuge scale test provides a new way of studying the damage degree of the structure under the action of underwater explosion. The similarity relationship refers to the bridge between the scaled model and the prototype, which cannot achieve complete similarity in practice. The centrifuge-scaled model test is performed by increasing the acceleration of a certain multiple. Meanwhile, the model reduces the corresponding ratio in the geometric layout to achieve the geometric similarity with the prototype test. Therefore, the applicability of the centrifuge scaling method in the study of the dynamic response of the structure in underwater explosion needs to be explored further. In this work, the underwater explosion scaling test numerical model for 1 g RDX (equivalent to 1.62 g TNT) charge under different centrifugal acceleration conditions is established, and the calculation results of underwater pressure and dynamic response of the steel plate are compared with the centrifuge test results. A prototype model is established to study the similarity relationship between the centrifuge scale test and the prototype model when the steel plate structure is in the stage of small deformation and linear elasticity. The application of the similarity ratio in the scale test of underwater explosion the centrifuge is discussed. The application of the centrifuge in the study of the failure response of the hydraulic structure in underwater explosion is expanded by establishing the model and comparing with the experimental results.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3