Prediction of New Risk Genes and Potential Drugs for Rheumatoid Arthritis from Multiomics Data

Author:

Birga Anteneh M.1,Ren Liping2,Luo Huaichao13ORCID,Zhang Yang4ORCID,Huang Jian1ORCID

Affiliation:

1. School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China

2. School of Health Care Technology, Chengdu Neusoft University, Chengdu, China

3. Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China (UESTC), Chengdu, China

4. Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China

Abstract

Rheumatoid arthritis (RA) is an autoimmune and inflammatory disease for which there is a lack of therapeutic options. Genome-wide association studies (GWASs) have identified over 100 genetic loci associated with RA susceptibility; however, the most causal risk genes (RGs) associated with, and molecular mechanism underlying, RA remain unknown. In this study, we collected 95 RA-associated loci from multiple GWASs and detected 87 candidate high-confidence risk genes (HRGs) from these loci via integrated multiomics data (the genome-scale chromosome conformation capture data, enhancer-promoter linkage data, and gene expression data) using the Bayesian integrative risk gene selector (iRIGS). Analysis of these HRGs indicates that these genes were indeed, markedly associated with different aspects of RA. Among these, 36 and 46 HRGs have been reported to be related to RA and autoimmunity, respectively. Meanwhile, most novel HRGs were also involved in the significantly enriched RA-related biological functions and pathways. Furthermore, drug repositioning prediction of the HRGs revealed three potential targets (ERBB2, IL6ST, and MAPK1) and nine possible drugs for RA treatment, of which two IL-6 receptor antagonists (tocilizumab and sarilumab) have been approved for RA treatment and four drugs (trastuzumab, lapatinib, masoprocol, and arsenic trioxide) have been reported to have a high potential to ameliorate RA. In summary, we believe that this study provides new clues for understanding the pathogenesis of RA and is important for research regarding the mechanisms underlying RA and the development of therapeutics for this condition.

Funder

Basic and Applied Basic Research Fund of Guangdong Province

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3