Research on Identification of Natural and Unnatural Earthquake Events Based on AlexNet Convolutional Neural Network

Author:

Ren Jiaqi1ORCID,Zhou Shaohui2ORCID,Wang Jianyong1ORCID,Yang Shun1ORCID,Liu Chao1ORCID

Affiliation:

1. Earthquake Agency of Ningxia Hui Autonomous Region, Yinchuan 750000, China

2. Shandong Earthquake Agency, Jinan 250000, China

Abstract

Accurately and quickly identifying the types of natural and unnatural earthquake events is the basic premise of monitoring, prediction, early warning, and other study in the field of seismology, which is of great significance to the prevention, evaluation, emergency rescue, and other work of earthquake disasters. Convolutional neural network model is a representative artificial intelligence deep learning algorithm, which has been widely used in computer vision, natural language processing, object type identification, and other fields in recent years. In this study, AlexNet convolutional neural network model is selected to study the type identification of 1539 earthquake event waveform records in and around Ningxia Hui Autonomous Region, China. Earthquake event waveform records contain three types: natural earthquake, explosion, and collapse, in which both explosion and collapse are unnatural earthquakes. MATLAB software is used to build the training module and test module for AlexNet convolutional neural network model, and the earthquake event waveform record is transformed into an image format file of 224 times 224 pixels as input parameters. Finally, AlexNet convolutional neural network model has the ability of automatic identification of earthquake event types. The results of this study show that the identification accuracy of earthquake event type in training module is 99.97%, the average value of loss function is 0.001, the identification accuracy of earthquake event type in test set is 98.51%, and the average value of loss function is 0.059. After training and testing, 60 different types of earthquake event waveform records were randomly selected, and AlexNet convolutional neural network model was used to identify them automatically. The automatic identification accuracy of natural earthquakes, explosions, and collapses was 90%, 80%, and 85%, respectively. After training AlexNet convolutional neural network model with earthquake event waveform records, it can have accurate and fast automatic identification ability. The accuracy of automatic identification is comparable to that of professional seismic workers, and the time of automatic identification is greatly reduced compared with that of professional seismic workers. This study can provide an implementation idea of deep learning based on artificial intelligence for the identification of earthquake event types and make contributions to the cause of earthquake prevention and disaster reduction.

Funder

Natural Science Foundation of Science and Technology Department of Ningxia Hui Autonomous Region

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference37 articles.

1. Quantitative relations of seismic source parameters and a classification of earthquakes

2. Automatic classification of volcanic earthquakes by using Multi-Layered neural networks

3. Identification of earthquakes from archaeological data: methodology, criteria and limitations;S. C. Stiros;Archaeoseismology,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3