Optimal Dispatch of Reactive Power Using Modified Stochastic Fractal Search Algorithm

Author:

Nguyen Thang Trung1ORCID,Vo Dieu Ngoc2,Van Tran Hai3,Van Dai Le4ORCID

Affiliation:

1. Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

2. Department of Power Systems, Ho Chi Minh City University of Technology, VNU-HCM, Ho Chi Minh City, Vietnam

3. Faculty of Electrical and Electronic Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam

4. Institute of Research and Development, Duy Tan University, Danang, Vietnam

Abstract

This paper applies a proposed modified stochastic fractal search algorithm (MSFS) for dealing with all constraints of optimal reactive power dispatch (ORPD) and finding optimal solutions for three different cases including power loss optimization, voltage deviation optimization, and L-index optimization. The proposed MSFS method is newly constructed in the paper by modifying three new solution update mechanisms on standard stochastic fractal search algorithm (SSFS). The first modification is to keep only one formula and abandon one formula in the diffusion process while the second modification and the third modification are used in the first update and the second update. In two updates of SSFS, solutions with low quality are updated with high probability while other solutions with high quality do not get chances to be updated. This manner results in the fact that some promising solutions around the high quality solutions can be missed. In order to tackle this restriction, the second modification of MSFS is to newly update the worst solutions in the first update and the best solutions in the second update. In the third modification, all existing formulas of SSFS in the two updates are abandoned and the same new proposed technique is used for updating such solutions in two updates. Compared to SSFS, the three modifications can bring advantages to MSFS such as using smaller number of produced solutions per iteration, spending shorter execution time, finding better optimal solutions, and owning more stable search ability. Furthermore, the proposed method also sees its effectiveness and robustness over SSFS by testing on IEEE 30-bus system and IEEE 118-bus system with three different single objectives for each system. The proposed method can find less minimum, average, and maximum for all the cases in addition to faster search speed. Besides, the proposed method is also compared to other methods such as PSO-based method group, GA-based method group, DE-based method group, and other recent methods. Result comparisons also indicate that the proposed method can be more efficient than almost all these methods with respect to less minimum and smaller values of control parameters. As a result, evaluation of the performance of the proposed method is that it should be used for seeking solutions of ORPD problem.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3