Functionality Analysis of Spent Coffee Ground Extracts Obtained by the Hydrothermal Method

Author:

Wu Chin-Tung1,Agrawal Dinesh Chandra2ORCID,Huang Wen-Ying3ORCID,Hsu Hsiu-Cheng4,Yang Shang-Jhen5,Huang Shu-Ling5ORCID,Lin Yung-Sheng5ORCID

Affiliation:

1. Bachelor Program in Interdisciplinary Studies, College of Future, National Yunlin University of Science and Technology, Yunlin, Taiwan

2. Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan

3. Department of Applied Cosmetology, HungKuang University, Taichung, Taiwan

4. Department of Dermatology, Changhua Christian Hospital, Changhua, Taiwan

5. Department of Chemical Engineering, National United University, Miaoli, Taiwan

Abstract

Coffee is a popular beverage all over the world, but spent coffee grounds (SCGs) constituting almost 75% of original beans are usually considered waste and disposed off. The present study analyzed the functionalities of SCG with a view of its reuse in the cosmetic industry. The SCG extraction was carried out by the hydrothermal method. The resultant extracts were tested for its antioxidant capacity, tyrosinase inhibition, and moisturizing ability. LC–MS/MS results showed two major components in SCG extracts, namely, trigonelline and caffeine. Also, the SCG contained total flavonoid contents of 29 ± 4.5 mg quercetin equivalents (QE)/g SCG and total phenolic contents of 9.44 ± 0.90 mg gallic acid equivalents (GAE)/g SCG. Regarding functionality analysis, SCG extracts exhibited reduction capacity of 8.18 ± 0.39 mg vitamin C equivalent (VCE)/g SCG, DPPH free-radical scavenging activity (IC50) of 3.11 mg SCG/mL, ABTS free-radical scavenging activity (IC50) of 13.61 mg SCG/mL, and tyrosinase inhibition capacity (IC50) of 2.23 mg SCG/mL. Moreover, the volatilization rate of the extract solution (37 mg SCG/mL) reduced by 15.9%. These results demonstrate the utility of recycling of SCG and illustrate its potential application in the development of skin care products.

Funder

National United University

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3