The Reliability Model for Bike-Sharing Dispatch Based on Hotspot Detection and Hypothesis Test: A Case Study in Beijing

Author:

Sun Chao1ORCID,Lu Jian1ORCID

Affiliation:

1. School of Transportation, Southeast University, Nanjing 210000, China

Abstract

In this article, a novel reliability model for bike-sharing dispatch is established using a hypothesis test. Based on the bike-sharing trajectory data from hotspot detection, we first perform the kernel density analysis to identify the dispatch points. As a result, a buffer area of 500 meters radius is designated as the studied dispatch area. From a systematic perspective, the reliability of the dispatch system is user-oriented during an ideal period when shared bikes constantly enter and leave the area. We propose the performance function of bike-sharing dispatch, in which the difference between origin and destination (OD) is defined as the main parameter of the failure probability of the system. By adopting different distribution forms, including Poisson distribution, Rayleigh distribution, exponential distribution, normal distribution, and gamma distribution, we examine the distribution characteristics of OD differences. The maximum likelihood estimation (MLE) technique is applied for model calibration, and chi-squared statistics are used to identify the acceptance of the null hypothesis. Finally, we take Beijing city as a case to verify this model. The results show that among many distribution models, the fitting goodness of normal distribution is the best. According to the properties and parameters of the distribution functions, we solve the dispatch scale for bike sharing at different confidence levels, allowing the dispatch strategy to be more flexible. Moreover, we find that the variation of dispatch quantity across different time periods and locations follows a systematic fluctuating trend.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3