Immunotherapy and Immune Infiltration in Patients with Clear Cell Renal Cell Carcinoma: A Comprehensive Analysis

Author:

Hou Lin1ORCID,Liu Xinyue1

Affiliation:

1. Operating Room, West China Hospital, Sichuan University, West China School of Nursing, Chengdu, China

Abstract

On a global scale, renal cell carcinoma (RCC) is the second most common form of cancer and the 10th leading cause of cancer-related deaths. There are about 70% of cases of RCC that are clear cell renal cell carcinomas (ccRCCs). This study explores possible targets for immune therapy in patients with RCC. In the recent years, immunotherapy has been applied to RCC patients. In order to identify genes that are closely associated with immune cells, a weighted gene coexpression network analysis (WGCNA) was conducted. A close association was found between genes involved in MEred and M0 macrophages, M1 macrophages, and M2 macrophages. A prognostic prediction model is subsequently developed by incorporating the OS and the expression level of key genes from the RCC cohort into a univariate COX regression analysis, a multivariate COX regression analysis, and a combined COX regression analysis. We finally discovered that 6 genes are closely associated with the prognosis of RCC patients, including SLC16A12, SLC2A9, IGF2BP2, EMX2, ANK3, and METTL7A. The survival analysis proved the prognostic prediction value of the model. The 1-year, 3-year, and 5-year AUC of ROC curves are 0.759, 0.723, and 0.733, respectively. For clinical ROC curves, the AUC score for risk score, stage, grade, and T stage is 0.759, 0.824, 0722, and 0.736, respectively. The nomogram was constructed for better prognosis prediction of RCC patients. In addition, GSVA and GO enrichment analysis was performed to explore the potential pathways that are closely associated with genes involved in the prognostic prediction model. Accordingly, our study demonstrates that immune cells play a crucial role in RCC infiltration. The development of a prognostic prediction model is a potential new prognostic biomarker and potential immunotherapy target for tumors.

Publisher

Hindawi Limited

Subject

Genetics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3