The Bass Diffusion Model on Finite Barabasi-Albert Networks

Author:

Bertotti M. L.1ORCID,Modanese G.1ORCID

Affiliation:

1. Free University of Bolzano-Bozen, Faculty of Science and Technology, 39100 Bolzano, Italy

Abstract

Using a heterogeneous mean-field network formulation of the Bass innovation diffusion model and recent exact results on the degree correlations of Barabasi-Albert networks, we compute the times of the diffusion peak and compare them with those on scale-free networks which have the same scale-free exponent but different assortativity properties. We compare our results with those obtained for the SIS epidemic model with the spectral method applied to adjacency matrices. It turns out that diffusion times on finite Barabasi-Albert networks are at a minimum. This may be due to a little-known property of these networks: whereas the value of the assortativity coefficient is close to zero, they look disassortative if one considers only a bounded range of degrees, including the smallest ones, and slightly assortative on the range of the higher degrees. We also find that if the trickle-down character of the diffusion process is enhanced by a larger initial stimulus on the hubs (via a inhomogeneous linear term in the Bass model), the relative difference between the diffusion times for BA networks and uncorrelated networks is even larger, reaching, for instance, the 34% in a typical case on a network with 104 nodes.

Funder

Free University of Bozen-Bolzano

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3