Cardiac External Counterpulsation Attenuates Myocardial Injury by Regulating NRF2-mediated Ferroptosisin and Oxidative stress Injury

Author:

Wang ShiXiang1,Wang Bin2,Guo Guofeng1,Chen Youquan1ORCID

Affiliation:

1. Department of Cardiovascular Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China

2. Department of Radiology, Heze Hospital of Traditional Chinese Medicine, Heze 274400, Shandong, China

Abstract

Objectives. To explore the role of the external counterpulsation (ECP) myocardial injury by controlling NRF2-mediated ferroptosis and oxidative stress damage in acute myocardial infarction. Methods. Twenty acute myocardial infarction (AMI) participants hospitalized from January 2021 to January 2022 were enrolled. In addition, 20 healthy individuals who had a physical examination at our hospital served as normal controls. Before the AMI patients were given ECP therapy, the blood samples were collected and echocardiography was performed as the data of AMI cohort. Then, the blood samples were collected and echocardiography was performed following the ECP therapy as the data of AMI + ECP cohort. The heart function was assessed by echocardiography test. Results. Our findings demonstrated that ECP could reduce heart damage in patients with AMI. In the current study, we found that ECP could reduce heart damage in patients with AMI through increasing the LV-EF% and enhancing LVEDV and LVESV, and the difference was statistically significant ( P  < 0.05). ECP could reduce the levels of oxidative stress and ferroptosis markers in blood samples of AMI patients, which was through the upregulation of NRF2 and HO-1 expression, and the difference was statistically significant ( P  < 0.05). Taken together, all data implied that ECP was able to attenuate myocardial injury by regulating NRF2-mediated ferroptosis and oxidative stress in AMI patients, and the difference was statistically significant ( P  < 0.05). Conclusion. Our findings in this research are that cardiac ECP is able to attenuate myocardial injury by regulating NRF2-mediated ferroptosis and oxidative stress injury in AMI patients. This certainly gives the possibility of a clinically effective treatment for AMI patients, although further clinical trials need to be validated.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3