Affiliation:
1. Department of Mathematics, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
2. Department of Mathematics, University of Žilina, 01026 Žilina, Slovakia
Abstract
A discrete equationΔy(n)=β(n)[y(n−j)−y(n−k)]with two integer delayskandj, k>j≥0is considered forn→∞. We assumeβ:ℤn0−k∞→(0,∞), whereℤn0∞={n0,n0+1,…}, n0∈ℕandn∈ℤn0∞. Criteria for the existence of strictly monotone and asymptotically convergent solutions forn→∞are presented in terms of inequalities for the functionβ. Results are sharp in the sense that the criteria are valid even for some functionsβwith a behavior near the so-called critical value, defined by the constant(k−j)−1. Among others, it is proved that, for the asymptotic convergence of all solutions, the existence of a strictly monotone and asymptotically convergent solution is sufficient.
Funder
Slovak Research and Development Agency
Subject
Applied Mathematics,Analysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献