Ethiopian Banknote Recognition Using Convolutional Neural Network and Its Prototype Development Using Embedded Platform

Author:

Aseffa Dereje Tekilu1ORCID,Kalla Harish1ORCID,Mishra Satyasis1ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, Adama Science and Technology University, Adama 1888, Ethiopia

Abstract

Money transactions can be performed by automated self-service machines like ATMs for money deposits and withdrawals, banknote counters and coin counters, automatic vending machines, and automatic smart card charging machines. There are four important functions such as banknote recognition, counterfeit banknote detection, serial number recognition, and fitness classification which are furnished with these devices. Therefore, we need a robust system that can recognize banknotes and classify them into denominations that can be used in these automated machines. However, the most widely available banknote detectors are hardware systems that use optical and magnetic sensors to detect and validate banknotes. These banknote detectors are usually designed for specific country banknotes. Reprogramming such a system to detect banknotes is very difficult. In addition, researchers have developed banknote recognition systems using deep learning artificial intelligence technology like CNN and R-CNN. However, in these systems, dataset used for training is relatively small, and the accuracy of banknote recognition is found smaller. The existing systems also do not include implementation and its development using embedded systems. In this research work, we collected various Ethiopian currencies with different ages and conditions and applied various optimization techniques for CNN architects to identify the fake notes. Experimental analysis has been demonstrated with different models of CNN such as InceptionV3, MobileNetV2, XceptionNet, and ResNet50. MobileNetV2 with RMSProp optimization technique with batch size 32 is found to be a robust and reliable Ethiopian banknote detector and achieved superior accuracy of 96.4% in comparison to other CNN models. Selected model MobileNetV2 with RMSProp optimization has been implemented through an embedded platform by utilizing Raspberry Pi 3 B+ and other peripherals. Further, real-time identification of fake notes in a Web-based user interface (UI) has also been proposed in the research.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning Based Framework for Reliable Sri Lankan Currency Authentication and Counterfeit Prevention;2023 IEEE 13th International Conference on System Engineering and Technology (ICSET);2023-10-02

2. Malaysian Banknote Recognition App for the Visually Impaired Using Deep Learning;2023 4th International Conference on Artificial Intelligence and Data Sciences (AiDAS);2023-09-06

3. Overview of Deep Learning Models for Banknote Recognition;2023 17th International Conference on Electronics Computer and Computation (ICECCO);2023-06-01

4. An Explainable Counterfeit and Genuine Ethiopian Banknote Classification Using Deep Learning;2023

5. Counterfeit and Genuine Ethiopian Banknote Classification Model Using Similarity Learning;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3