Affiliation:
1. College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China
Abstract
Imaging and recognition of targets with complex maneuvers bring a new challenge to conventional radar applications. In this paper, the three-dimensional (3D) high-resolution image is attained in real-time by a Multiple-Input-Multiple-Output (MIMO) radar system with single Orthogonal-Frequency-Division-Multiplexing (OFDM) pulse. First, to build the orthogonal transmit waveform set for MIMO transmission, we utilize complex orthogonal designs (CODs) for OFDM subcarrier modulation. Based on the OFDM modulation, a preprocessing method is developed for transmit waveform separation without conventional matched filtering. The result array manifold is the Kronecker product of the steering vectors of subcarrier/transmit antenna/receive antenna uniform linear arrays (ULAs). Then, the high-resolution image of target is attained by the Multidimensional Unitary Estimation of Signal Parameters via Rotational Invariant Techniques (MD-UESPRIT) algorithm. The proposed imaging procedures include the multidimensional spatial smoothing, the unitary transform via backward-forward averaging, and the joint eigenvalue decomposition (JEVD) algorithm for automatically paired coordinates estimation. Simulation tests compare the reconstruction results with the conventional methods and analyze the estimation precision relative to signal-to-noise ratio (SNR), system parameters, and errors.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics