High Glucose Induces Endothelial COX2 and iNOS Expression via Inhibition of Monomethyltransferase SETD8 Expression

Author:

Qi Jie1ORCID,Wu Qichao1,Cheng Qian1ORCID,Chen Xiangyuan1ORCID,Zhu Minmin1ORCID,Miao Changhong1ORCID

Affiliation:

1. Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China

Abstract

Cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS) overexpression results in endothelial apoptosis, thus mediating vascular endothelial injury in hyperglycaemia. E26 transformation-specific sequence transcription factor-1 (ESE-1), which belongs to the E26 transformation-specific family of transcription factors, has been demonstrated to be involved in COX2 and iNOS gene transcription. Our previous study indicated that SET domain-containing protein 8 (SETD8) downregulation is involved in high glucose-mediated endothelial inflammation in human umbilical vein endothelial cells (HUVECs). Here, we report that SETD8 plays a major role in hyperglycaemia-induced COX2 and iNOS expression. In HUVECs, upregulation of ESE-1 expression was related to high glucose-mediated apoptosis and COX2 and iNOS expression. High glucose inhibited SETD8 expression, and overexpression of SETD8 diminished the effects of high glucose treatment. Consistently, RNA silencing of SETD8 led to the opposite effect. Furthermore, SETD8 was found to interact with specificity protein 1 (SP1). Blockade of SP1 protected against high glucose-mediated endothelial injury. Mechanistically, we showed that H4K20me1, a downstream target of SETD8, and SP1 were enriched at the ESE-1 promoter region by ChIP assay. Luciferase reporter assays indicated that SETD8 overexpression attenuated ESE-1 promoter activity and augmented the inhibitory effect of siSP1 on ESE-1 promoter activity. In general, our data indicate that SETD8 interacts with SP1 to coregulate ESE-1 expression, which is involved in hyperglycaemia-mediated endothelial apoptosis in HUVECs.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3