Affiliation:
1. Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
Abstract
Cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS) overexpression results in endothelial apoptosis, thus mediating vascular endothelial injury in hyperglycaemia. E26 transformation-specific sequence transcription factor-1 (ESE-1), which belongs to the E26 transformation-specific family of transcription factors, has been demonstrated to be involved in COX2 and iNOS gene transcription. Our previous study indicated that SET domain-containing protein 8 (SETD8) downregulation is involved in high glucose-mediated endothelial inflammation in human umbilical vein endothelial cells (HUVECs). Here, we report that SETD8 plays a major role in hyperglycaemia-induced COX2 and iNOS expression. In HUVECs, upregulation of ESE-1 expression was related to high glucose-mediated apoptosis and COX2 and iNOS expression. High glucose inhibited SETD8 expression, and overexpression of SETD8 diminished the effects of high glucose treatment. Consistently, RNA silencing of SETD8 led to the opposite effect. Furthermore, SETD8 was found to interact with specificity protein 1 (SP1). Blockade of SP1 protected against high glucose-mediated endothelial injury. Mechanistically, we showed that H4K20me1, a downstream target of SETD8, and SP1 were enriched at the ESE-1 promoter region by ChIP assay. Luciferase reporter assays indicated that SETD8 overexpression attenuated ESE-1 promoter activity and augmented the inhibitory effect of siSP1 on ESE-1 promoter activity. In general, our data indicate that SETD8 interacts with SP1 to coregulate ESE-1 expression, which is involved in hyperglycaemia-mediated endothelial apoptosis in HUVECs.
Funder
National Key R&D Program of China
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献