Affiliation:
1. Clinical Research Service Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 Guangdong Province, China
2. Collaborative Innovation Engineering Technology Research Center of Clinical Medical Big Data Cloud Service in Medical Consortium of West Guangdong Province, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 Guangdong Province, China
Abstract
Background. Acute kidney injury (AKI) is an important complication in critically ill patients, especially in sepsis and septic shock patients. Early prediction of AKI in septic shock can provide clinicians with sufficient information for timely intervention so that improve the patients’ survival rate and quality of life. The aim of this study was to establish a nomogram that predicts the risk of AKI in patients with septic shock in the intensive care unit (ICU). Methods. The data were collected from the Medical Information Mart for Intensive Care III (MIMIC-III) database between 2001 and 2012. The primary outcome was AKI in the 48 h following ICU admission. Univariate and multivariate logistic regression analyses were used to screen the independent risk factors of AKI. The performance of the nomogram was evaluated according to the calibration curve, receiver operating characteristic (ROC) curve, decision curve analysis, and clinical impact curve. Results. A total of 2415 patients with septic shock were included in this study. In the training and validation cohort, 1091 (64.48%) of 1690 patients and 475 (65.52%) of 725 patients developed AKI, respectively. The predictive factors for nomogram construction were gender, ethnicity, congestive heart failure, diabetes, obesity, Simplified Acute Physiology Score II (SAPS II), angiotensin-converting enzyme inhibitors (ACEI) or angiotensin receptor blockers (ARBs), bilirubin, creatinine, blood urea nitrogen (BUN), and mechanical ventilation. The model had a good discrimination with the area under the ROC curve of 0.756 and 0.760 in the training and validation cohorts, respectively. The calibration curve for probability of AKI in septic shock showed optimal agreement between prediction by nomogram and actual observation. Decision curve and clinical impact curve analysis indicated that the nomogram conferred high clinical net benefit. Conclusion. The proposed nomogram can quickly and effectively predict the risk of AKI at an early stage in patients with septic shock in ICU, which can provide information for timely and efficient intervention in patients with septic shock in the ICU setting.
Funder
Affiliated Hospital of Guangdong Medical University Clinical Research Program
Subject
Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献