Affiliation:
1. Department of Mathematics, University of Haifa, Haifa 31905, Israel
Abstract
Lagrange geometry is the geometry of the tensor field defined by the fiberwise Hessian of a nondegenerate Lagrangian function on the total space of a tangent bundle. Finsler geometry is the geometrically most interesting case of Lagrange geometry. In this paper, we study a generalization which consists of replacing the tangent bundle by a general tangent manifold, and the Lagrangian by a family of compatible, local, Lagrangian functions. We give several examples and find the cohomological obstructions to globalization. Then, we extend the connections used in Finsler and Lagrange geometry, while giving an index-free presentation of these connections.
Subject
Mathematics (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献