Affiliation:
1. Institut de Mathématiques et de Sciences Physiques (IMSP), Université d'Abomey-Calavi (UAC), Porto-Novo BP 613, Benin
Abstract
Let(M,g)be a smooth manifoldMendowed with a metricg. A large class of differential operators in differential geometry is intrinsically defined by means of the dual metricg∗on the dual bundleTM∗of 1-forms onM. If the metricgis (semi)-Riemannian, the metricg∗is just the inverse ofg. This paper studies the definition of the above-mentioned geometric differential operators in the case of manifolds endowed with degenerate metrics for whichg∗is not defined. We apply the theoretical results to Laplacian-type operator on a lightlike hypersurface to deduce a Takahashi-like theorem (Takahashi (1966)) for lightlike hypersurfaces in Lorentzian spaceℝ1n+2.
Subject
Mathematics (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献