On the critical periods of Liénard systems with cubic restoring forces

Author:

Du Zhengdong1

Affiliation:

1. Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

Abstract

We study local bifurcations of critical periods in the neighborhood of a nondegenerate center of a Liénard system of the formx˙=y+F(x),y˙=g(x), whereF(x)andg(x)are polynomials such thatdeg(g(x))3,g(0)=0, andg(0)=1,F(0)=F(0)=0and the system always has a center at(0,0). The set of coefficients ofF(x)andg(x)is split into two strata denoted bySIandSIIand(0,0)is called weak center of type I and type II, respectively. By using a similar method implemented in previous works which is based on the analysis of the coefficients of the Taylor series of the period function, we show that for a weak center of type I, at most[(1/2)deg(F(x))]1local critical periods can bifurcate and the maximum number can be reached. For a weak center of type II, the maximum number of local critical periods that can bifurcate is at least[(1/4)deg(F(x))].

Funder

Science Foundation for Young Scholars of Sichuan University

Publisher

Hindawi Limited

Subject

Mathematics (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3