On the existence of a non-zero lower bound for the number of Goldbach partitions of an even integer
-
Published:2004
Issue:15
Volume:2004
Page:789-798
-
ISSN:0161-1712
-
Container-title:International Journal of Mathematics and Mathematical Sciences
-
language:en
-
Short-container-title:International Journal of Mathematics and Mathematical Sciences
Affiliation:
1. Institut für Mathematik, Universität Potsdam, Potsdam D-14415, Germany
Abstract
The Goldbach partitions of an even number, given by the sums of two prime addends, form the nonempty set for all integers2nwith2≤n≤2×1014. It will be shown how to determine by the method of induction the existence of a non-zero lower bound for the number of Goldbach partitions of all even integers greater than or equal to 4. The proof depends on contour arguments for complex functions in the unit disk.
Funder
Alexander von Humboldt Foundation
Publisher
Hindawi Limited
Subject
Mathematics (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Goldbach partitions and norms of cusp forms;Journal of Numerical Analysis and Approximation Theory;2019-09-08