Locally conformal symplectic manifolds

Author:

Vaisman Izu1

Affiliation:

1. Department of Mathematics, University of Haifa, Israel

Abstract

A locally conformal symplectic (l. c. s.) manifold is a pair(M2n,Ω)whereM2n(n>1)is a connected differentiable manifold, andΩa nondegenerate2-form onMsuch thatM=αUα(Uα- open subsets).Ω/Uα=eσαΩα,σα:Uα,dΩα=0. Equivalently,dΩ=ωΩfor some closed1-formω. L. c. s. manifolds can be seen as generalized phase spaces of Hamiltonian dynamical systems since the form of the Hamilton equations is, in fact, preserved by homothetic canonical transformations. The paper discusses first Hamiltonian vector fields, and infinitesimal automorphisms (i. a.) on l. c. s. manifolds. If(M,Ω)has an i. a.Xsuch thatω(X)0, we say thatMis of the first kind andΩassumes the particular formΩ=dθωθ. Such anMis a2-contact manifold with the structure forms(ω,θ), and it has a vertical2-dimensional foliationV. IfVis regular, we can give a fibration theorem which shows thatMis aT2-principal bundle over a symplectic manifold. Particularly,Vis regular for some homogeneous l. c. s, manifolds, and this leads to a general construction of compact homogeneous l. c. s, manifolds. Various related geometric results, including reductivity theorems for Lie algebras of i. a. are also given. Most of the proofs are adaptations of corresponding proofs in symplectic and contact geometry. The paper ends with an Appendix which states an analogous fibration theorem in Riemannian geometry.

Publisher

Hindawi Limited

Subject

Mathematics (miscellaneous)

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Variational aspect and kinetic theory of locally conformal dynamics;Journal of Physics A: Mathematical and Theoretical;2024-08-22

2. On Darboux theorems for geometric structures induced by closed forms;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-06-20

3. Morse-Novikov cohomology on foliated manifolds;Differential Geometry and its Applications;2024-04

4. Emergent Spacetime and Cosmic Inflation;Universe;2024-03-21

5. Invariant submanifolds of conformal symplectic dynamics;Journal de l’École polytechnique — Mathématiques;2024-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3