Affiliation:
1. Department of Mathematics, University of Haifa, Israel
Abstract
A locally conformal symplectic (l. c. s.) manifold is a pair(M2n,Ω)whereM2n(n>1)is a connected differentiable manifold, andΩa nondegenerate2-form onMsuch thatM=⋃αUα(Uα- open subsets).Ω/Uα=eσαΩα,σα:Uα→ℝ,dΩα=0. Equivalently,dΩ=ω∧Ωfor some closed1-formω. L. c. s. manifolds can be seen as generalized phase spaces of Hamiltonian dynamical systems since the form of the Hamilton equations is, in fact, preserved by homothetic canonical transformations. The paper discusses first Hamiltonian vector fields, and infinitesimal automorphisms (i. a.) on l. c. s. manifolds. If(M,Ω)has an i. a.Xsuch thatω(X)≠0, we say thatMis of the first kind andΩassumes the particular formΩ=dθ−ω∧θ. Such anMis a2-contact manifold with the structure forms(ω,θ), and it has a vertical2-dimensional foliationV. IfVis regular, we can give a fibration theorem which shows thatMis aT2-principal bundle over a symplectic manifold. Particularly,Vis regular for some homogeneous l. c. s, manifolds, and this leads to a general construction of compact homogeneous l. c. s, manifolds. Various related geometric results, including reductivity theorems for Lie algebras of i. a. are also given. Most of the proofs are adaptations of corresponding proofs in symplectic and contact geometry. The paper ends with an Appendix which states an analogous fibration theorem in Riemannian geometry.
Subject
Mathematics (miscellaneous)
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Variational aspect and kinetic theory of locally conformal dynamics;Journal of Physics A: Mathematical and Theoretical;2024-08-22
2. On Darboux theorems for geometric structures induced by closed forms;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-06-20
3. Morse-Novikov cohomology on foliated manifolds;Differential Geometry and its Applications;2024-04
4. Emergent Spacetime and Cosmic Inflation;Universe;2024-03-21
5. Invariant submanifolds of conformal symplectic dynamics;Journal de l’École polytechnique — Mathématiques;2024-01-09