Thermomechanical-Phase Transformation Simulation of High-Strength Steel in Hot Stamping

Author:

Wu Wenhua1,Hu Ping1,Shen Guozhe1

Affiliation:

1. State Key Laboratory of Structural Analysis for Industrial Equipment, Faculty of Vehicle and Mechanics, Dalian University of Technology, Dalian 116024, China

Abstract

The thermomechanical-phase transformation coupled relationship of high-strength steel has important significance in forming the mechanism and numerical simulation of hot stamping. In this study a new numerical simulation module of hot stamping is proposed, which considers thermomechanical-transformation multifield coupled nonlinear and large deformation analysis. In terms of the general shell finite element and 3D tetrahedral finite element analysis methods related to temperature, a coupled heat transmission model for contact interfaces between blank and tools is proposed. Meanwhile, during the hot stamping process, the phase transformation latent heat is introduced into the analysis of temperature field. Next the thermomechanical-transformation coupled constitutive models of the hot stamping are considered. Static explicit finite element formulae are adopted and implemented to perform the full numerical simulations of the hot stamping process. The hot stamping process of typical U-shaped and B-pillar steel is simulated using the KMAS software, and a strong agreement comparison between temperature, equivalent stress, and fraction of martensite simulation and experimental results indicates the validity and efficiency of the hot stamping multifield coupled constitutive models and numerical simulation software KMAS. The temperature simulated results also provide the basic guide for the optimization designs of cooling channels in tools.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Validation of an Optimized Cooling System for Hot Stamping Die;Journal of Physics: Conference Series;2016-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3