Tensile Fracture Behavior of Corroded Pipelines: Part 2—Numerical Simulation Based on Monte Carlo Method

Author:

Liu Feng1ORCID,Yang Yuchao1ORCID,Xi Feng2ORCID

Affiliation:

1. Shandong University of Science and Technology, Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Qingdao 266590, China

2. School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China

Abstract

The experimental part in this companion paper revealed that the macroscopic mechanical performance of corroded pipes follows a decreasing trend with the increasing corrosion rate. Inspired by the surface topology by scanning electronic microscopy (SEM) and the scattered distribution of test data, a computational procedure based on the Monte Carlo simulation method was developed in this paper to understand the randomness of the crack propagation process and the performance degradation mechanism of the corroded pipelines. A total of 2700 random samples, which contain three corrosion rates of 15%, 45%, and 70% with each corrosion rate having three variances of 0.02 mm, 0.06 mm, and 0.10 mm, were generated and then were mapped to the shell section of the FE model. In the application of the material model considering the damage, a series of “numerical” tensile experiments were carried out. The simulation analysis indicated that the corrosion rate and the standard variance of the thickness collaboratively dominated the mechanical performance of the corroded specimen. Under the same standard deviation, the wall corresponding to the higher corrosion rate is more likely to cause stress concentration in the weak position, which makes the pipe more prone to fail. Furthermore, under the same corrosion rate, the increase of the standard deviation will aggravate the unevenness of the wall thickness distribution, and then the lower tensile load will cause damage at weak locations and lead to randomness of the crack propagation path, thereby reducing the pipe’s macroscopic strength and fracture strain. The analytical methods in this paper have the potential of being a useful tool for structural reliability assessments of aged pipelines and the full life cycle design of new pipeline networks.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3