SPARC Levels Modulate the Capacity of Mitomycin to Inhibit the Proliferation of Human Tenon’s Capsule Fibroblasts

Author:

Guo Yuanyuan1,Ni Shouxiang1,Zhou Weiyan1ORCID,Hou Jiangping1,Shen Jiaquan1ORCID

Affiliation:

1. Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China

Abstract

Purpose. To evaluate the role of SPARC in the antiproliferation effect of MMC on human Tenon’s fibroblasts (HTF). Method. Sixteen PACG patients aged 59 ± 10 years (31–72 years), including 6 males and 10 females, were recruited. Tenon tissue was harvested during filtering surgery. Cell density was evaluated after MMC application with different concentrations and application times, by which the optimized MMC application modality was determined. MMC, si-SPARC, or SPARC protein was used when needed to evaluate the cell densities under different conditions, by which the role of SPARC in MMC-mediated antifibrotic process was identified. Results. Considering that the cell densities, as well as SPARC expression on mRNA and protein levels, are relatively stable when the MMC concentration is higher than 0.02% and exposure time longer than 90 s, we chose the MMC application pattern with 0.02% and 90 s as an optimized pattern for the downstream work. Compared to control, the si-SPARC and MMC downregulated the SPARC protein by 91% (P<0.01) and 65% (P<0.01) and mRNA by 96% (P<0.01) and 64% (P<0.01), respectively. MMC decreases the cell densities by 53.50% compared to control. si-SPARC + MMC dramatically deceased the cell density no matter compared to the control group (P<0.01) or MMC group (P<0.01); correspondingly, the relative collagen gel area in the MMC + si-SPARC group was higher than that in the MMC group or si-SPARC group (P<0.05). The reactive oxygen species expression in the MMC + si-SPARC group is higher than that in the MMC group (P<0.05). Conclusion. This study demonstrates that in HTF, (1) MMC downregulates the expression of SPARC in protein and mRNA levels; (2) SPARC depletion has synergistic effect on the antifibrotic effect of MMC; and (3) reactive oxygen species are the possible mediator in the antifibrotic effect of MMC and si-SPARC.

Funder

Key Research and Development Program of Shandong Province

Publisher

Hindawi Limited

Subject

Ophthalmology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3