Identifying Potential Clinical Syndromes of Hepatocellular Carcinoma Using PSO-Based Hierarchical Feature Selection Algorithm

Author:

Ji Zhiwei1,Wang Bing123

Affiliation:

1. School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China

2. The Advanced Research Institute of Intelligent Sensing Network, Tongji University, Shanghai 201804, China

3. The Key Laboratory of Embedded System and Service Computing, Tongji University, Ministry of Education, Shanghai 201804, China

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Clinical symptoms attributable to HCC are usually absent, thus often miss the best therapeutic opportunities. Traditional Chinese Medicine (TCM) plays an active role in diagnosis and treatment of HCC. In this paper, we proposed a particle swarm optimization-based hierarchical feature selection (PSOHFS) model to infer potential syndromes for diagnosis of HCC. Firstly, the hierarchical feature representation is developed by a three-layer tree. The clinical symptoms and positive score of patient are leaf nodes and root in the tree, respectively, while each syndrome feature on the middle layer is extracted from a group of symptoms. Secondly, an improved PSO-based algorithm is applied in a new reduced feature space to search an optimal syndrome subset. Based on the result of feature selection, the causal relationships of symptoms and syndromes are inferred via Bayesian networks. In our experiment, 147 symptoms were aggregated into 27 groups and 27 syndrome features were extracted. The proposed approach discovered 24 syndromes which obviously improved the diagnosis accuracy. Finally, the Bayesian approach was applied to represent the causal relationships both at symptom and syndrome levels. The results show that our computational model can facilitate the clinical diagnosis of HCC.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3