Neural Network Dynamics without Minimizing Energy

Author:

Shih Mau-Hsiang1ORCID,Tsai Feng-Sheng1ORCID

Affiliation:

1. Department of Mathematics, National Taiwan Normal University, 88 Section 4, Ting Chou Road, Taipei 11677, Taiwan

Abstract

Content-addressable memory (CAM) has been described by collective dynamics of neural networks and computing with attractors (equilibrium states). Studies of such neural network systems are typically based on the aspect of energy minimization. However, when the complexity and the dimension of neural network systems go up, the use of energy functions might have its own limitations to study CAM. Recently, we have proposed the decirculation process in neural network dynamics, suggesting a step toward the reshaping of network structure and the control of neural dynamics without minimizing energy. Armed with the decirculation process, a sort of decirculating maps and its structural properties are built here, dedicated to showing that circulation breaking taking place in the connections among many assemblies of neurons can collaborate harmoniously toward the completion of network structure that generates CAM.

Funder

National Science Council

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Depathing maps for circulating state shifts;Fixed Point Theory and Applications;2013-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3