Optimization of Human Resource Performance Management System Based on Improved R-Means Clustering Algorithm

Author:

Wang Rui1ORCID

Affiliation:

1. School of Management, Henan Institute of Economics and Trade, Zhengzhou 450046, China

Abstract

With the rapid development of network technology and database technology, computers have been able to store large-scale and massive data. On the other hand, traditional data analysis and processing tools such as management information system can only process these data on the surface, but the deeper data analysis ability is not satisfactory. The contradiction between data supply ability and data analysis ability is becoming more and more prominent, so there is an urgent need for an automation technology that can deeply process data. Data mining technology came into being. Cluster analysis, as an important topic in data mining, is a data mining method that divides data into natural groups and gives the description of the characteristics of each group. It is a basic method of data mining and knowledge discovery. Cluster analysis is a data mining technology for unsupervised classification of data without prior knowledge and guidance. Through the appropriate use of advanced algorithms, it can explore the hidden valuable information, improve the quality of data analysis and interpretation, and provide a scientific judgment basis for the reprocessing or understanding of data by other data analysis and sorting tools. First, this paper briefly introduces the principle, development, and methods of cluster analysis and expounds the application of cluster analysis. Then it expounds the principle of R-means clustering algorithm, analyzes the advantages and disadvantages of basic R-means clustering algorithm, and expounds several existing improvement methods. An improved R-means clustering algorithm and a clustering analysis model based on R-means clustering algorithm are proposed, and the corresponding algorithm flow and implementation are given.

Publisher

Hindawi Limited

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3