SPECTRUMNET: Cooperative Spectrum Monitoring Using Deep Neural Networks

Author:

Suriya M.1ORCID,Sumithra M. G.2ORCID

Affiliation:

1. Sri Eshwar College of Engineering, Coimbatore 641202, Tamil Nadu, India

2. Dr.N.G.P. Institute of Technology, Coimbatore 641048, Tamil Nadu, India

Abstract

Spectrum monitoring is one of the significant tasks required during the spectrum sharing process in cognitive radio networks (CRNs). Although spectrum monitoring is widely used to monitor the usage of allocated spectrum resources, this work focuses on detecting a primary user (PU) in the presence of secondary user (SU) signals. For signal classification, existing methods, including cooperative, noncooperative, and neural network-based models, are frequently used, but they are still inconsistent because they lack sensitivity and accuracy. A deep neural network model for intelligent wireless signal identification to perform spectrum monitoring is proposed to perform efficient sensing at low SNR (signal to noise ratio) and preserve hyperspectral image features. A hybrid deep learning model called SPECTRUMNET (spectrum sensing using deep neural network) is presented. It can quickly and accurately monitor the spectrum from spectrogram images by utilizing cyclostationary features and convolutional neural networks (CNN). The class imbalance issue is solved by uniformly spreading the samples throughout the classes using the oversampling method known as SMOTE (Synthetic Minority Oversampling Technique). The proposed model achieves a classification accuracy of 94.46% at a low SNR of −15 dB, which is an improvement over existing CNN models with minor trainable parameters.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Reference31 articles.

1. Notice of proposed rulemaking and order;F. CC. Docket no.03-322,2003

2. Cognitive radio for flexible mobile multimedia communications;J. Mitola,1999

3. A survey on spectrum management in cognitive radio networks

4. Cooperative spectrum handovers in cognitive radio networks;A. Haldorai,2019

5. Cooperative spectrum sensing;K. B. Letaief,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3