Multiobjective Optimization of an Off-Road Vehicle Suspension Parameter through a Genetic Algorithm Based on the Particle Swarm Optimization

Author:

Peng Dengzhi12ORCID,Tan Gangfeng12ORCID,Fang Kekui3,Chen Li4,Agyeman Philip K.12,Zhang Yuxiao5

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

2. School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China

3. Hubei Center for Quality Inspection of Special Purpose Vehicles, Suizhou 441300, China

4. Dongfeng Off-road Vehicle Co. Ltd., Shiyan 442013, China

5. Suizhou-WUT Industry Research Institute, Suizhou 441300, China

Abstract

Ride comfort and handling performances are known conflicts for off-road vehicles. Recent publications focus on passenger vehicles on class B and class C roads, while, for off-road vehicles, they should be able to run on rougher roads: class D, class E, or class F roads. In this paper, a quarter vehicle model with nonlinear damping is established to analyze the suspension performance of a medium off-road vehicle on the class F road. The ride comfort, road holding, and handling performance of the vehicle are indicated by the weighted root mean square (RMS) value of the vertical acceleration of the sprung mass, suspension travel, and tire deflection. To optimize these objectives, the genetic algorithm (GA), particle swarm optimization (PSO), and a genetic algorithm based on the particle swarm optimization (GA-PSO) are initiated. The efficiency and accuracy of these algorithms are compared to find the best suspension parameters. The effect of the optimized method is validated by the field test result. The ride comfort, road holding, and handling performance are improved by approximately 20%.

Funder

Ministry of Education of the People's Republic of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3