Complexity Measures for Maxwell–Boltzmann Distribution

Author:

Smaal Nicholas1ORCID,Piqueira José Roberto C.1ORCID

Affiliation:

1. Escola Politécnica da Universidade de São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, N. 158, 05508-900 São Paulo, SP, Brazil

Abstract

This work presents a discussion about the application of the Kolmogorov; López-Ruiz, Mancini, and Calbet (LMC); and Shiner, Davison, and Landsberg (SDL) complexity measures to a common situation in physics described by the Maxwell–Boltzmann distribution. The first idea about complexity measure started in computer science and was proposed by Kolmogorov, calculated similarly to the informational entropy. Kolmogorov measure when applied to natural phenomena, presents higher values associated with disorder and lower to order. However, it is considered that high complexity must be associated to intermediate states between order and disorder. Consequently, LMC and SDL measures were defined and used in attempts to model natural phenomena but with the inconvenience of being defined for discrete probability distributions defined over finite intervals. Here, adapting the definitions to a continuous variable, the three measures are applied to the known Maxwell–Boltzmann distribution describing thermal neutron velocity in a power reactor, allowing extension of complexity measures to a continuous physical situation and giving possible discussions about the phenomenon.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference25 articles.

1. Three approaches to the definition of the concept quantity of information;A. N. Kolmogorov;Problemy Peredachi Informatsii,1965

2. Complexity in Plant Communities: the Notion and Quantification

3. Zipf's Law Organizes a Psychiatric Ward

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3