The Fabric of Polycrystalline Ice Deformed in Simple Shear: Experiments in Torsion, Natural Deformation and Geometrical Interpretation

Author:

Bouchez J. L.1,Duval P.2

Affiliation:

1. Laboratoire de Tectonophysique, Université de Nantes, 2 Chemin de la Houssinière, Nantes-Cedex 44072, France

2. Laboratoire de Glaciologie, C.N.R.S., Domaine Universitaire, BP 53, Grenoble-Cedex 38041, France

Abstract

Three cylinders of artificial ice have been deformed in torsion at about –10℃ up to finite shear strains γ of 0.6, 0.95 and 2. The initial random lattice orientation rapidly evolves into a bimodal distribution of the basal slip planes as already observed by Kamb (1972) and Duval (1981) for low-strains experiments near the melting point. For the γ = 0.6 and 0.95 experiments, one family of grains (> 50%) corresponds to basal planes tending to parallel the imposed shear plane; the basal planes of the other family make a broader maximum at about 60° from the shear plane. The direction of minimum concentration between the two populations approximately corresponds to the flattening plane or to the elongation direction of the strain ellipsoid. With increasing strain (γ = 2) the second submaximum vanishes and only the principal maximum parallel to the shear plane remains. This evolution is conformable with the data of Hudleston (1977) in a natural shear zone in glacial ice; it also compares remarkably well with Etchecopar's (1977) geometrical computer model of simple shear in the same range of γ values. Single slip on the basal plane with no preferential slip direction in that plane can explain the analogy between fabrics in ice deformed in plane strain and fabrics obtained from the two-dimensional computer model.The bimodal distribution reflects predominant slip on the basal plane; the progressively increasing heterogeneous strain enhances internal distorsion, rigid body rotation and recrystallization of grains unfavorably oriented for further slip, leading to the unimodal distribution. The adequacy of fabric analyses to infer the strain regime and the sense of shear in plastically deformed rocks is strengthened.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3