Stability and Finite-Time Synchronization Analysis for Recurrent Neural Networks with Improved Integral-Type Time-Varying Delays

Author:

Li Meng1ORCID,Maimaitiaili Gulijiamali12ORCID

Affiliation:

1. School of Mathematics Science, Xinjiang Normal University, Urumqi, Xinjiang 830017, China

2. Xinjiang Key Laboratory of Mental Development and Learning Science, China

Abstract

This paper studies the stability criterion of integral time-varying recurrent neural networks (RNNs) with zero lower bound and finite-time synchronization based on improved sliding mode control (SMC). Firstly, a sufficient criterion for universal asymptotic stability of RNNs with integral time-varying delays is obtained by estimating a tight upper bound of augmented Lyapunov-Krasovskii functional (LKF) derivative with inequality scaling technique and mutually convex combined inequality. Secondly, in order to eliminate the time that error system state trajectory slides along sliding mode flow pattern until convergence at the origin, based on drive response and SMC theory, a suitable sliding mode controller is designed by considering that sliding mode flow pattern is equal to synchronization error. Finally, maximum allowable upper bound of delay under different delay derivatives are obtained by considering trajectory change of input function under different initial value. Synchronization trajectory of drive and response systems with mismatched parameters and activation functions under the influence of controller are studied, and synchronization time which is required for error system to reach stability is obtained. Simulation results show that the introduction of integral delay can be more comprehensive from both difference and area, so that drive system state is eventually steady at equilibrium point and synchronized with response system. Stability criterion of this paper not only has less conservative and computation complexity but also has shorter synchronization control time.

Funder

Special Education Project of Xinjiang

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3