Comparative Analysis of Edge Soiling Resilience: Full-Cell vs. Half-Cell Photovoltaic Modules in Different Mounting Orientations

Author:

Zhou Jicheng12,Yu Li2ORCID,Yuetikuer Ayipaiyili2,Hao Linzhao1,Jiang Bingchun1ORCID

Affiliation:

1. Guangdong University of Science and Technology, Dongguan 523083, China

2. School of Energy Science and Engineering, Central South University, Changsha 410083, China

Abstract

The performance of distributed PV systems is often hindered by edge soiling, mainly due to the challenges associated with centralized cleaning. In recent years, half-cell modules have gained popularity over conventional full-cell modules due to their potential for improved performance. However, limited research has been conducted to compare the effects of edge soiling on full-cell and half-cell modules, particularly in various mounting orientations. Furthermore, there is a scarcity of methods that integrate simulation and experimentation to analyze the characteristics of shaded PV modules. This study aims to optimize module selection and mounting orientation to mitigate the impact of edge soiling. Simulated models and experimental setups were developed for both full-cell and half-cell modules in both landscape and portrait orientations. The results reveal that the degree of shading correlates with the ratio of shaded substrings within a module. In addition, module performance can be significantly enhanced by altering the mounting orientation. Specifically, the findings demonstrate that half-cell modules outperform full-cell modules when mounted in the portrait orientation. However, in the landscape orientation, the advantage of half-cell modules diminishes. Remarkably, the choice of mounting orientation is found to be contingent on the severity of edge soiling for half-cell modules. This work significantly contributes to the understanding of shading effects in PV systems and offers practical guidance for optimizing distributed PV systems against edge soiling.

Funder

Guangdong University of Science and Technology

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3